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A moment-mAtching bAsed method for the AnAlysis 
of mAnipulAtor’s repeAtAbility of positioning 
with ArbitrArily distributed joint cleArAnces

opArtA nA dopAsowywAniu momentów metodA AnAlizy 
powtArzAlności pozycjonowAniA mAnipulAtorA 

o dowolnym rozkłAdzie luzów nA przegubAch
The joint clearance can be the mainly concern factor in the analysis of repeatability of positioning for a manipulator. Traditionally, 
the joint clearance is empirically assumed to be uniform or normal variables. This hasty treatment may be not accurate enough 
when the precise statistic information of variables cannot be obtained. To handle the reliability evaluation problem with arbitrarily 
distributed joint clearances, a moment-matching based method is proposed. The highly nonlinear performance function is firstly 
established by the forward kinematics and then a second order Taylor expansion is performed on this function for the order reduc-
tion. Based on the maximum entropy principle, the Lagrange multipliers method is employed to derive a best-fit probability density 
function (PDF) with consideration of the first four moments-matching restrictions. This study shows that the prosed method can 
acquire a better accuracy and efficiency compared with the first order second moment method (FOSM), first order reliability meth-
od (FORM) and Monte Carlo simulation (MCS). A serial manipulator is applied as an example to demonstrate the new method.

Keywords: manipulator, positioning repeatability, arbitrarily distributed clearance, moment-matching, La-
grange multipliers method.

Luzy na przegubie manipulatora mogą stanowić główny czynnik wpływający na analizę powtarzalności pozycjonowania manipu-
latora. Tradycyjnie przyjmuje się empirycznie podbudowane założenie, że luz na przegubie jest zmienną jednorodną lub normalną. 
Takie ujęcie może jednak nie być wystarczająco dokładne w przypadku, gdy nie można uzyskać precyzyjnych informacji statystycz-
nych na temat zmiennych. Aby rozwiązać problem oceny niezawodności przy dowolnie rozłożonych luzach na przegubie, zapropo-
nowano metodę opartą na dopasowywaniu momentów. W pierwszej kolejności, obliczono za pomocą kinematyki prostej, wysoce 
nieliniową funkcję stanu granicznego, a następnie wyznaczono szereg Taylora drugiego rzędu dla tej funkcji w celu obniżenia 
rzędu. Opierając się na zasadzie maksymalnej entropii, zastosowano metodę mnożników Lagrange'a w celu wyprowadzenia naj-
lepiej dopasowanej funkcji gęstości prawdopodobieństwa (PDF) z uwzględnieniem pierwszych czterech ograniczeń dopasowania 
momentów. Badanie to pokazuje, że przedstawiona metoda pozwala uzyskać wyższą trafność i skuteczność niż metoda pierwszego 
rzędu drugiego momentu (FOSM), metoda analizy niezawodności pierwszego rzędu (FORM) czy symulacja Monte Carlo (MCS). 
Zastosowanie nowej metody zilustrowano na przykładzie manipulatora szeregowego. 

Słowa kluczowe: manipulator, powtarzalność pozycjonowania, arbitralnie rozłożone luzy, dopasowanie mo-
mentów, metoda mnożników Lagrange'a.
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1. Introduction 

Manipulators have been widely used in various types of repeti-
tive work, because they not only ameliorate the quality of products, 
but also improve the efficiency significantly [1, 17, 19, 22].A typical 
manipulator usually consists of a series of links connected by joints, 
the clearance and deviation in dimension of links cannot be elimi-
nated completely due to manufacturing and assembly errors. The in-
stability in the manipulator’s behavior can be bring about by those 
variations, and finally result in the actual position of the end-effector 
deviating from its desired position. Some other defects include vibra-
tions, aperiodic shocks and noises [2, 9, 21]. As it well known, the 
analysis of the positioning repeatability is one of the two topics in the 
kinematic reliability and it means the probability that the manipulator 

falls inside a permissible region with reference to a particular point. 
The other issue is the interval reliability which considers the reli-
ability over the entire path [18]. In recent decades, a lot of methods 
have been proposed for the interval reliability analysis [7, 16, 24], 
but the analysis of positioning accuracy has not drawn enough atten-
tion, especially when the manipulator has an arbitrary distribution 
clearance.

A probabilistic approach was presented by Rao and Bhatti[18] 
to study the impact that join clearances had on the kinematic and 
dynamic performance of a two-link manipulator. In their work, all 
the parameters are treated as independent random variables follow-
ing Gaussian distributions. Given a specified distribution of the joint 
clearance, Zhu and Ting [26] put forward a probability distribution 
function (PDF)-based method to analyze a planar robot. With inte-
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gration of the first order Taylor expansion and bivariate dimension 
reduction for dependent joint clearance variables, a hybrid dimension 
reduction method was proposed by Wang et al. [20] to evaluate the 
point reliability of a slider crank mechanism. The drawbacks of this 
method lied in that the joint clearance was also uniform variable and 
the additional error caused by dimension reduction was unavoidable. 
Kim et al. [12] firstly supposed that all the parameters of an open-
loop mechanism meet the norm distribution and then the first-order 
reliability method (FORM) was used to calculate the reliability in 
a particular configuration. Luo and Du [14] constructed a probabi-
listic model of a planar mechanism with consideration of truncated 
random variables, though the positive or negative infinity of random 
variables was abandoned, this method was limited in the empirical 
assumption of normality of clearance. To maximize the tolerance as 
well as minimize the operation error of a manipulator, Choi and Yoo 
[4] proposed a single Monte Carlo simulation (MCS) to perform the 
reliability analysis. Time-consuming made this kind approach less 
attractive. By treating input errors and joint clearances as a mixture 
of random interval variables, Zhan et al. [23] developed an analyti-
cal method with combination the first order second moment method 
(FOSM) and MCS to compute the reliability of a parallel manipula-
tor. Later on, because of the excellent learning ability of the artificial 
neural networks (ANN), many ANN-based methods were put for-
ward to estimate the reliability for mechanisms[3, 6, 10]. This type of 
approach is suitable for a system of which the performance function 
is not available as an explicit function. To ensure the estimation pre-
cision, a mass of training samples are usually required. 

Most of the current methods for the analysis of repeatability of 
positioning are developed with a foundation that all the uncertain 
parameters are supposed to be random variables with typical distri-
butions. In practice, it is difficult to obtain the exact distribution due 
to the lack of the precise statistic information [25], especially the 
joint clearance. Taken together, there are two of limitations in con-
ventional approaches.

(1) Far-fetched assumption. Unlike the deviations in dimension 
of links, which could be regarded as normally distributed, the joint 
clearance can take place during the rotation of the journal in the bear-
ing and usually has a greater influence, the random nature for the 
motion of the journal in two dimensions makes the joint clearance 
rarely follow a normal or a uniform distribution [20, 25]. The simple 
assumption may be inappropriate. 

(2) Unbalance in accuracy and efficiency. The popular methods, 
such as MCS, FORM and FOSM, can hardly have great efficiency as 
well as good accuracy when arbitrarily distributed clearance exists. 
MCS can acquire an accurate solution, but numerous samples make 
it rather time costly [23]. FOSM is efficient but its accuracy deterio-
rates dramatically when the system output no-longer meets a normal 
distribution [16, 20]. FORM exhibits a better accuracy but is still 
inadequate for a large system since an iterative process is required to 
search for the most probable point [8, 12]. 

Therefore, a novel method developed for the analysis of the ma-
nipulators’ positioning accuracy with unknown distribution clear-
ance is the key objective of this study, in which the available in-
formation only includes the first four moments. With combination 
of the second order Taylor expansion and the Lagrange multipliers 
method, a best-fit probability distribution is firstly derived, in which 
all the characteristics of the output deviation can be featured. Here, 
this new method can be called the second order fourth moment meth-
od (SOFM). The advantages of the proposed method include three 
folds: 1) a wider range of application can be achieved, since the joint 
clearance can be arbitrarily distributed, 2) a greater efficiency can be 
realized because of the use of less samples. And 3) a better accuracy 
of the analysis can be acquired as the more statistic information (the 
first four moments instead of only the mean and the variance) is uti-
lized to search for a proper distribution of the system output.  

The remainder of this paper has been organized as follows. Sec-
tion 2 established the probabilistic model of a manipulator with un-
certain parameters. Section 3 briefly reviewed conventional methods 
and presented all the details of the proposed method. The simulation 
is carried out in section 4 followed by the discussion in section 5. 
Section 6 summarized the conclusions.

2. Probabilistic modeling of the manipulator

2.1. Forward kinematics with uncertain parameters

A typical manipulator used in industry is often structured with 
open-loop linkages, as shown in Fig.1 (a). The way to describe the 
relative movement between two links is to construct the D-H coordi-
nate, as shown in Fig.1 (b). The transformation between two coordi-
nates can be represented by a homogenous matrix, written as [5]:
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where Sin and Cos are sine and cosine function respectively, 
(ai,di,αi,θi) denote the D-H parameters at the ith link.

The final position and orientation of the end-effector with refer-
ence to the base frame can be determined by multiplying all the D-H 
matrix, formulated as:
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where n is the number of degree of freedoms (DOF), Rot  is the ori-
entation matrix and , ,x y zP P P =  Pos  is the vector of position.

(a) 3-D model (b) D-H coordinate

Fig. 1. A schematic diagram of a serial manipulator

The forward kinematics is analyzed based on the 6-DOFs ma-
nipulator, the corresponding D-H parameters are listed in Table 1.

The deviation in dimension of link and joint clearance have 
different influence on the performance of a manipulator. The error 
caused by link dimension deviations can hold constant even can be 
eliminated by calibration methods [15]. Whereas the latter, joint 
clearance, can exhibit random nature. It has been approved that clear-
ance contributes most to the position error of the end-effector [13, 
26]. In this research, geometrical variables are regarded as normally 
distributed, the mean and the variance are listed in Table 2. The dis-
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tribution of joint clearance is unknown and just featured with the first 
four moments.

2.2. Repeatability of positioning

Due to the effect of joint clearance and link dimension deviations, 
the actual position of the end-effector and desired position may not 
overlap. This deviation is defined as the position error ε，thus [12]:

 ε X( ) = − + − + −( ) ( ) ( )x p y p z pd x d y d z
2 2 2  (3)

Where ( ), ,d d dx y z  denote the desired position, ( ), ,x y zp p p  rep-
resent the actual position and X is a random vector consists of dimen-
sion and join clearance variables.

The unaccepted performance of a manipulator means the end-
effector falls outside a permissible region, suppose the size of such a 
safe area is δ, the performance function can be expressed as:

 Z g= ( ) = −X δ � (4)

Therefore, the probability of failure of the manipulator can be 
defined as:

 [ ]
( )

( )
0

Pr 0f
g

P Z f z dz
≤

= ≤ = ∫
X

 (5)

where ( )f z  is the probability distribution function (PDF) of the 
variable Z.

3. Moment-matching based method

3.1. Previous study

Three widely used methods, FOSM, FORM and MCS are briefly 
reviewed to emphasize their different accuracy and efficiency. Given 
a set of variables { }1 2 = , , , nx x x…X  with the mean values 
µµX = ( )µ µ µX X Xn1 1, , , .

FOSM can provide a convenient way to evaluate the reliability 
for a system with the normally distributed output. This method is ef-
ficient as it directly linearizes the performance function ( ) Z g= X  
with first order Taylor expansion at the means of variables μX [14]. 
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where n is the total number of variables.

Then the mean  μZ  and the standard deviation  σZ  of the performance 
function are approximated based on the above equation. The probabil-
ity of failure defined in Eq. (5) can be computed by:

 Pf Z
Z

= −∅

 


1 µ

σ  (7)

Table 1. D-H parameters

Joint number ( )ia mm ( )id mm ( )iα ° ( )iθ ° Initial angle( ° )

1 40 330 -90 1θ 0

2 315 0 0 2θ -90

3 70 0 -90 3θ 0

4 0 310 90 4θ 0

5 0 0 -90 5θ 90

6 0 70 0 6θ 0

Table 2. Distributions of geometric parameters

Variables Distribution Mean (mm) Standard deviation(mm)

1a normal 40 0.04

2a normal 315 0.32

3a normal 70 0.07

1d normal 330 0.33

4d normal 310 0.31

6d normal 70 0.07
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where ∅ (⋅) denotes the standard normal cumulative distribution 
function.

FORM is commonly applied in structural engineering, in which 
random variables X need to be transformed into standard nor-
mal variables U, the reliability can be converted into an optimal 
problem[12,16], formulated as:

 
minimize

satisfy

β =

=

( )





U U

X

T

g ( ) 0
 (8)

where β is the reliability index.

After an iterative process for a search of the most probable point 
(MPP), the probability of failure in terms of the reliability index can 
be obtained, given as:

 Pf = −∅( )1 β  (9)

MCS is used as a straightforward method to analyze various types 
of mechanism. Especially for systems with complicated or implicit 
performance functions. The key of MCS to evaluate the reliability is 
formulated as [4]:

 f
f

N
P N=  (10)

where N is the size of simulation samples and fN  is the number of 
failed performance. 

3.2. Second order fourth moment method (SOFM)

In this research, it can be found that both FOSM and FORM 
exhibit unsatisfied accuracy when confronted with a sophisticated 
manipulator system with the arbitrarily distributed joint clearance. A 
new method to ameliorate the accuracy with maintenance of a high 
efficiency is therefore put forward.

3.2.1. Moment estimation of the system output Z

With Taylor series expansion technique, the mean values
µµX = ( )µ µ µX X Xn1 1, , ,  is utilized as the expansion point for order-

reduction of the performance function. The approximated perform-
ance function can be written as:

Z g g g x g x x
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where ig  and  ijg are the first-order and second-order partial deriva-
tives of the performance function respectively.

The advantages of using the second order Taylor expansion for 
SOFM includes two folds :(1) it is generally more accurate than using 
only the first order components, like FOSM; and (2) it requires no 
iterative process for a search of the most probable point, like FORM. 

According to the statistic theory, the first four moments of a vari-
able ix  can be defined as:

υ µ µx k i Xi
k

i Xi
k

i ii
E x x f x dx for k= −( )




= ∫ −( ) ( ) = …( )0 1 4, , ,     (12)

where k denotes the order and ( )if x  is the probability density func-
tion (PDF) of  ix .

According to the Eq. (12), the first four moments of ix  can be 
denoted by 1 0 2 3 4, , , ,υ υ υx x xi i i

  . In addition, the third moment of 

a variable represents the extent of asymmetry of the PDF about its 
mean which can be measured by the skewness value. Meanwhile the 
fourth moment describes the tailedness of the PDF which can be 
measured by the kurtosis value [11]. The relationship between the 
variance and the third and fourth moment is formulated as:
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where sC  is the skewness value,  kC  is the kurtosis value and σ
ixσ  is 

the standard deviation of variable  ix .
Therefore, the first four moments of Z can be estimated with the 

corresponding first four moments of  X , the symbol   Zkυ is applied 
to denote the kth order moment of Z. Through Eq. (11), the mean of 
Z can be approximated as:
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Then the variance of Z is formulated as:
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where σ Zσ  is the standard deviation.

In a similar way, the third moment of Z can be derived, expressed 
as:
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The fourth moment can be obtained, formulated as:
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Recall that the key is to find a best-fit distribution ( ) f z meeting 
the first four moments’ matching-constraints. It has been approved 
that the one with a maximum entropy is most rational among all pos-
sible solutions [11].

3.2.2. Probability density function with the maximum entropy

To make the following analysis convenient, the variable Z is trans-
formed into variable W such that its mean equals to zero and variance 
equals to one, the transform equation is:

 W Z Z

Z
=

− µ
σ

 (18)
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The first four moments of variable W can be obtained with the 
statistical information of variable Z, written as:

 υ
υ
σ

wK
Zk

Z
k for k= =( )0 1 4, ,  (19)

The way to measure the uncertainty of a random variable is the 
information entropy proposed by Shannon from the perspective of 
statistic [11]. The information entropy of the variable W in terms of its 
probability density function ( )wf  is expressed as:

 ( ) ( ) ( )[ ]WH f w ln f w dwW = −∫  (20)

The first four origin moments of the variable W are defined as:

 υwK
W

kw f w dw for k= ( ) =( )∫ 0 1 4, ,  (21)

The first four origin moments of the variable W are treated as the 
additional restrictions. The search of the best-fit PDF can be equiva-
lent to a constrained optimization problem. Therefore the Lagrange 
multipliers method is suitable and can be applied to solve this prob-
lem, define the Lagrange function as:

 L w f w dwf w ln f w dw k
k

k
wkWW= ( ) −



( ) ( )[ ]−

=
∫ ∫∑+ λ υ

0

4
     (22)

where λ λ λ λ= ( )0 1 4, , ,  represent the Lagrange multipliers.

The optimal solution can be solved by:
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∂
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( )

L f w
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λ,
0  (23)

which can derive the best-fit probability density function for the vari-
able W, formulated as:

 f w exp w
k

k
k( ) = −











=
∑

0

4
λ  (24)

Substitute Eq. (24) into Eq. (21), a set of equations with only un-
known Lagrange multipliers can be established as:

 υ λwK
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 =( )∫ ∑

=0

4
0 1 4, ,  (25)

With the MATLAB functions of quadgk and fsolve, the Lagrange 
multipliers can be figured out. Therefore, the probability of failure of 
the manipulator with the cumulative density function of variable W 
over a range of ]( ,0−∞  can be reformulated as:

 P exp w dwf
k

k
k

z z
= −











−∞

−

=
∫ ∑

µ σ
λ

/

0

4
 (26)

4. Simulation

4.1. Arbitrarily distributed joint clearance

A typical industrial manipulator, as shown in Fig.1, is utilized as 
an example to illustrate the proposed method. A general non-linear 
path composed of 10 points is designed by the following equation, 
written as:

 
( )
( )

1 00 350
100
10 645

x sin t
y cos t
z t

 = +
 =
 = +

 (27)

where t increases from t=0 to t=4π with a step of 1.396 rad.

The resulting trajectory from the start-point A to the end-point D 
is drawn in Fig. 2. 

Fig. 2. Designed path of the manipulator

The first four moments of variables are used as information re-
strictions, which can be given in advance or computed from a set 
of observations, instead of relying on the inappropriate assumption 
of normality or uniformity. Then based on the maximum entropy 
principle, the Lagrange multipliers method is applied to search for a 
perfect distribution of the output deviations. The flow chart is drawn 
in Fig.3.

Fig. 3. Procedure of reliability analysis with SOFM
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The popular approximate methods, FOSM and FORM are used 
for an accuracy comparison. Since MCS can produce an accurate re-
sult based on a large scale of samples. 100,000 samples are generated 
for MCS and its solution is regarded as the benchmark result. The 
simulation process is based on an Intel CORE i5 CPU.

Actually, unlike the geometrical parameters which remains con-
stant after they are manufactured, the clearance occurs randomly when 
the journal rotates in the bearing. The center of the journal varies in 
two dependent dimensions which approves the unreasonable assump-
tion of normality or uniformity [20]. In practice, the exact probability 
density function is generally unavailable due to the lack of sufficient 
information. Instead, only a few moments can be usually acquired 
including the mean, variance, coefficients of the skewness and kur-
tosis [25]. Hence, the joint clearance with arbitrary distribution can 
be modeled as:

 θ θ χi i= +  (28)

where θi is the actual value of the ith joint, θi  denotes the ideal value 
and χ  is an arbitrarily distributed random variable. 

The clearance has its mean value of 0°, the standard deviation 
of 0.5°, the skewness value of sC = 0.45 and the kurtosis value of 

kC = 4.36.With a permissible region δ = 2.30 mm, the Pf is evaluated 
and the corresponding results are shown in Fig.4.

Fig. 4. Pf with arbitrarily distributed clearances

The time that the four methods cost in the calculation process is 
listed in Table 3.

4.2. Other two distribution types of clearance 

For conducting a comprehensive comparison, other two distri-
butions are considered in which the joint clearance is assumed to 
be uniformly and normally distributed respectively. Firstly, some 
researchers believe that the joint clearance exhibits features of uni-
formity during the motion and the actual angle value varies within a 
certain range [16, 20, 27]. With such an assumption, the joint clear-
ance can be therefore modeled as:

 θ θ ξi i= +  (29)

where ξ  is a uniformly distributed random variable with a range of 
[-0.5°, 0.5°]. 

Here δ =1.30 mm. The probability of failure Pf is calculated 
through the four aforementioned methods, and the results are plotted 
in Fig. 5.

Fig. 5. Pf with uniformly distributed clearances

The CPU time each method requires during the evaluation process 
is listed in Table 4.

From the perspective of some other researchers, regarding the 
joint clearance as a normally distributed variable is reasonable and 
they have belief in that there is nothing different between the joint 
clearance and the deviation in geometrical parameters [12,14]. Thus, 
similar to the geometrical parameters, joint clearances can be modeled 
as normal variables, given as:

 θ θ ηi i= +  (30)

Table 4. CPU time of four methods with uniform clearances (unit/s)

Point number 1 2 3 4 5 6 7 8 9 10

MCS 374.62 374.81 373.25 374.82 374.26 373.19 373.55 374.09 374.91 374.92

FOSM 12.76 12.31 13.94 13.91 12.97 13.60 12.28 12.84 13.8 13.58

FORM 35.49 34.31 33.07 34.69 34.86 34.35 34.51 34.48 33.78 34.31

SOFM 16.06 17.41 16.55 16.09 16.19 17.64 17.38 16.63 17.90 16.06

Table 3. CPU time of four methods with arbitrary distribution clearances (unit/s)

Point number. 1 2 3 4 5 6 7 8 9 10

MCS 373.86 374.82 373.36 373.52 373.29 373.27 374.73 374.15 374.0 373.28

FOSM 12.21 13.92 12.01 13.54 13.63 13.73 12.16 12.79 12.51 13.60

FORM 27.90 27.16 27.45 28.82 27.30 28.65 28.07 28.99 27.15 27.88

SOFM 18.15 18.10 19.06 19.55 19.86 18.25 19.13 18.93 18.02 18.67
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where  η  is a normally distributed random variable with the mean 
value of 0° and the standard deviation of 0.5°.

With the permissible region δ = 2.80 mm, the probability of fail-
ure Pf with normally distributed joint clearances can be computed, 
results are drawn in Fig.6.

Fig. 6. Pf with normally distributed clearances

The CPU time each method takes in the calculation process is 
listed in Table 5.

The average CPU time Atime can be obtained from Table 3 to Ta-
ble 5. The average estimation error Aerr can be also computed from 
Fig.4 to Fig.6. The equations are formulated as:

 

A t
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= −
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where N is the total point number, ti is the CPU time that each method 
takes on the ith point,  i

fP  is the benchmark result from MCS and i
fP  

is the estimated result solved by three approximate methods.

The efficiency and accuracy of each method in three joint distri-
butions are listed in Table 6.

4.3. Reliability analysis with reference to a particular point

To better understand the reason why four methods behave so dif-
ferently with the different type of clearance distribution. A deeper in-
sight is provided into what will happen when the joint clearance ex-
ists. Without loss of generality, the reliability analysis at the start point 
A on the path is used as an example. The target position of the end-
effector is Pos = [350, 100, 645].Through the invers kinematics, the 
corresponding desired angle values can be computed and listed as 
θ  = [15.94°, -87.43°, -2.62°, 0°, 90.06°, 61.68°]. 

When the joint clearance is treated as an arbitrarily distributed 
variable χ. Its mean value, standard deviation, coefficients of skew-
ness and kurtosis are 0°, 0.5°, 0.45 and 4.36 respectively. All the 
geometric parameters have normal distributions, in which Cs = 0 and 
CK  = 3. As described in previous. During the motion of the manipula-
tor, the actual position of the end-effector will deviate from its tar-
get position due to the joint clearance. Based on 100,000 simulation 
samples, the stochastic positions are plotted on the following Fig.7 
(a), Fig.7 (b) and Fig.7(c), the corresponding position errors are drawn 
in Fig.7 (d).

As we can see from Fig. 7(a) to Fig.7(c), the probabilistic position 
of the end-effector is randomly scattered around the desired position. 
The shape is irregular, since the distribution of the joint clearance is 
neither normal nor uniform. It can be noted from Fig.7 (d) that the 
distribution of position error is non-normal. Actually, it right skewed. 
With the proposed method, the reliability can be approximated by the 
following steps. 

Step1) Obtain the first four moments of variables which can be 
listed as the following Table 7. 

Step2) Compute the first four moments of Z. By utilizing the 
data obtained from step 1. Through Eq. (14) to Eq. (17), the corre-
sponding moments for Z are calculated and they are  2.4286zµ = , 

0 1Zυ =  , 1 0Zυ = , 2 0.2099Zυ = , 3 0.0828Zυ = −  and 4 0.1794Zυ =  . Make Z transform into the standard variable W, the corresponding 
moments can be obtained as:  0wµ = , 0 1wυ = , 1 0wυ = , 2 1wυ = ,

3 0.8607wυ = −  and 4 4.0731.wυ =

Step3) Derive the best-fit distribution. Substitute the results ob-
tained from step2 into Eq. (25) to establish a set of equations. With 
MATLAB functions of quadgk and fsolve, the Lagrange multipliers 
can be solved. They are listed as: λ0 =0.0263, λ1 = 0.1964, λ2 = 0.5391, 
λ3 = -0.4986 and λ4 = 0.8816.

Step4) Calculate the probability of failure. Since the Lagrange 
multipliers are obtained. The Pf can be calculated with a permitted 

Table 5. CPU time of four methods with normal clearances (unit/s)

Point number. 1 2 3 4 5 6 7 8 9 10

MCS 373.87 373.76 374.53 374.59 373.37 373.97 373.89 374.29 374.41 374.50

FOSM 12.55 13.35 13.31 12.32 12.23 12.99 13.91 12.68 13.17 12.44

FORM 27.25 25.76 26.51 27.09 27.67 27.87 26.64 25.41 25.44 25.77

SOFM 17.68 16.50 17.62 16.48 17.85 16.70 16.39 16.50 17.23 16.94

Table 6. Comparison in accuracy and efficiency of four methods

Method
Arbitrary distribution Uniform distribution Normal distribution

Atime (/s) Aerr (%) Atime (/s) Aerr (%) Atime (/s) Aerr (%)

MCS 373.83 — 374.24 — 374.12 —

FOSM 13.01 0.082 13.20 0.045 12.90 0.026

FORM 27.94 0.065 34.39 0.060 26.54 0.018

SOFM 18.77 0.028 16.79 0.018 16.99 0.009
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Fig. 8. Stochastic position and position error with the uniform distribution clearance

Fig. 7. Stochastic position and position error with the arbitrary distribution clearance

(a) X-Y plane (b) X-Z plane

(c) Y-Z plane (d) Frequency histogram of the position error 

(c) Y-Z plane d) Frequency histogram of the position error

(a) X-Y plane (b) X-Z plane
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threshold value δ = 2.30 mm. Herein, with the MATLAB function of 
integral, Pf is 4.8×10-4. 

In a similar way, when the joint clearance meets a uniform and 
norm distribution. Each are based on the another 100,000 samples, the 
possible locations of the end-effector and position errors can be also 
drawn in the following Fig.8 and Fig.9 respectively.

As shown from Fig.8 (a) to Fig.8(c). In three planes (X-Y, X-Z, 
and Y-Z planes), the stochastic positions of the end-effector with the 
uniformly distributed joint clearance are uniformly scattered around 
the target position with a shape like a parallelogram, which is quite 
different from that for the arbitrarily distributed joint clearance. There 
is also a positive skewness value for the distribution of position error, 
which can be observed from Fig.8 (d).

Meanwhile. As shown from Fig.9 (a) to Fig.9(c). Under the influ-
ence of normally distributed joint clearance, it is interesting to ob-
serve that the shape of the stochastic positions is an ellipse in three 
planes. The random locations are scattered around the desired position 
with a more intensive trend. The position error has a similar distribu-

tion to that for the uniformly and arbitrarily distributed clearance, as 
shown in Fig.9 (d).

5. Discussion 

1) Influence of the distribution type of clearance

As we can see from Fig.4 to Fig.6, at the same point on the path, 
the probability of failure of the manipulator varies with the distribu-
tion type of the clearance. The reason is that the impact caused by 
joint clearance on the deviation between the desired position and 
actual position is quite different. The possible location of the end-
effector is related to the joint clearance distribution, as approved by 
the scatter pictures shown in from Fig.7 to Fig.9. With a given clear-
ance distribution, the scatter shape formed by 106 samples is regular. 
For example, the shape of a parallelogram with a uniform distribution 
clearance or an ellipse with a norm clearance. Whereas, the shape can 
be more irregular compared with that for other two distributions, if the 
exact distribution is unknown. Therefore, the distribution type of joint 

Fig. 9. Stochastic position and position error with the normal distribution clearance

(a) X-Y plane (b) X-Z plane

(c) Y-Z plane (d) Frequency histogram of the position error

Table 7. Statistic information for the joint clearance and geometric parameters

moment a1 a2 a3 d1 d4 d6 θ1 θ2 θ3 θ4 θ5 θ6

μ 40 315 70 330 310 70 15.94 −87.43 −2.62 0 90.06 61.68

υ0 1 1 1 1 1 1 1 1 1 1 1 1

υ1 0 0 0 0 0 0 0 0 0 0 0

υ2(σ 2 ) 0.0016 0.1024 0.0049 0.1089 0.0961 0.0049 0.25 0.25 0.25 0.25 0.25 0.25

υ3 0 0 0 0 0 0 0.0563 0.0563 0.0563 0.0563 0.0563 0.0563

υ4 0.0002 0.0983 0.0010 0.1078 0.0894 0.0010 0.0281 0.0281 0.0281 0.0281 0.0281 0.0281
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clearance has a significant influence on the reliability of a manipulator 
and an appropriate assumption is essential.

2) Accuracy analysis

As shown from Fig.4 to Fig.6. There is a much agreement be-
tween the results of MCS and SOFM. The average estimation er-
rors of the two traditional methods, FOSM (about 0.051%) and 
FORM(about 0.048%), are larger than that of the prosed method 
SOFM(0.018%),which can be observed from Table 6. Recall the ba-
sis on which each method performs. FOSM requires that the output 
deviations of the system meet the norm distribution. Unfortunately, 
the scattered data of the position error is never normally distributed 
no matter whether the clearance is a normal variable or not, as shown 
from Fig.7 (d) to Fig.9 (d). As for FORM, this method can be convert-
ed into an optimization problem after a transformation of abnormal 
variables to standard normal variables. This procedure may result in 
large errors, especially when the clearance is arbitrarily distributed. 
With a second order Taylor expansion, SOFM derives a best-fit dis-
tribution by utilizing the first four moments and thus can overcome 
the drawbacks existing in FOSM and FORM. Compared with FOSM 
and FORM, the accuracy of SOFM can be improved by at least twice 
in all cases

3) Efficiency analysis 

In terms of efficiency, as we can observe from Table 6. FOSM is 
the most efficient method since it directly linearizes the performance 
function at the mean of variables, it only takes about 13s. Other things 
equal, the efficiency of SOFM (about 17s) is close to FOSM and it 
comes to the second place, because the higher order Taylor series is 
used and four moments instead of just the mean and the variance are 
considered. The efficiency of FORM (about 30s) is only better than 
MCS (about 370s) but much lower than both FOSM and FOSM, the 
reason is that an iterative process is required to search for the most 
probable point. MCS is based on a large size of samples to evaluate 
the reliability and naturally is very time-consuming. 

6. Conclusion 

In this paper, the repeatability of positioning is analyzed with 
consideration of the influence of arbitrarily distributed clearance. Un-
like conventional methods, the joint clearance is empirically assumed 

to be normally or uniformly distributed. A new approach has been 
put forward with integration of Taylor series expansion method and 
Lagrange multipliers method. Achievements and conclusions can be 
summarized as follows.

1) Distribution type of the clearance has significant influence 
on the reliability. The quality of the performance of a manipulator is 
significantly affected by the distribution type of the joint clearance. 
Therefore, it is better to use the first four moments instead of an in-
appropriate assumption of normality or uniformity when there is not 
sufficient information. 

2) Better accuracy and efficiency make SOFM more attrac-
tive. SOFM exhibits the better accuracy as well as greater efficiency 
compared to that of FOSM, FORM and MCS. The result of SOFM can 
be improved by at least two times with respect to accuracy. Further-
more, the prosed method is nearly twenty times much more efficient 
than MCS. Overall consideration, SOFM can outperform all the other 
three methods when they are used to handle the problem of position-
ing accuracy analysis with arbitrarily distributed joint clearances.

3) Moment-matching method can have a wider range of appli-
cation. Based on the moment-matching principle, only the first four 
moments are needed to derive an optimal distribution of the system 
output. The proposed method exhibits impressive quality for the arbi-
trarily distributed clearance, which can be easily extended to the nor-
mal and uniform clearance. From this point of view, SOFM is robust 
and has a wider range of application.

However, SOFM still belongs to an approximate method. Some 
errors can always exist and originate from the following sources: 1) 
order-reduction for the highly non-linear performance function; 2) 
moment estimation process. If a more accurate result is expected, may 
be more than four moments are needed to be taken in to account.
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